Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials.

نویسندگان

  • A Kamondi
  • L Acsády
  • X J Wang
  • G Buzsáki
چکیده

Theta frequency field oscillation reflects synchronized synaptic potentials that entrain the discharge of neuronal populations within the approximately 100-200 ms range. The cellular-synaptic generation of theta activity in the hippocampus was investigated by intracellular recordings from the somata and dendrites of CA1 pyramidal cells in urethane-anesthetized rats. The recorded neurons were verified by intracellular injection of biocytin. Transition from non-theta to theta state was characterized by a large decrease in the input resistance of the neuron (39% in the soma), tonic somatic hyperpolarization and dendritic depolarization. The probability of pyramidal cell discharge, as measured in single cells and from a population of extracellularly recorded units, was highest at or slightly after the negative peak of the field theta recorded from the pyramidal layer. In contrast, cyclic depolarizations in dendrites corresponded to the positive phase of the pyramidal layer field theta (i.e. the hyperpolarizing phase of somatic theta). Current-induced depolarization of the dendrite triggered large amplitude slow spikes (putative Ca2+ spikes) which were phase-locked to the positive phase of field theta. In the absence of background theta, strong dendritic depolarization by current injection led to large amplitude, self-sustained oscillation in the theta frequency range. Depolarization of the neuron resulted in a voltage-dependent phase precession of the action potentials. The voltage-dependent phase-precession was replicated by a two-compartment conductance model. Using an active (bursting) dendritic compartment spike phase advancement of action potentials, relative to the somatic theta rhythm, occurred up to 360 degrees. These data indicate that distal dendritic depolarization of the pyramidal cell by the entorhinal input during theta overlaps in time with somatic hyperpolarization. As a result, most pyramidal cells are either silent or discharge with single spikes on the negative portion of local field theta (i.e., when the somatic region is least polarized). However, strong dendritic excitation may overcome perisomatic inhibition and the large depolarizing theta rhythm in the dendrites may induce spike bursts at an earlier phase of the extracellular theta cycle. The magnitude of dendritic depolarization is reflected by the timing of action potentials within the theta cycle. We hypothesize that the competition between the out-of-phase theta oscillation in the soma and dendrite is responsible for the advancement of spike discharges observed in the behaving animal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of IPSP theta rhythm by muscarinic receptors and endocannabinoids in hippocampus.

Theta rhythms are behaviorally relevant electrical oscillations in the mammalian brain, particularly the hippocampus. In many cases, theta oscillations are shaped by inhibitory postsynaptic potentials (IPSPs) that are driven by glutamatergic and/or cholinergic inputs. Here we show that hippocampal theta rhythm IPSPs induced in the CA1 region by muscarinic acetylcholine receptors independent of ...

متن کامل

Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons.

Dual whole-cell patch clamp recordings from the soma and dendrites of CA1 pyramidal neurons located in hippocampal slices of adult rats were used to examine the potential mechanisms of phase precession. To mimic phasic synaptic input, 5-Hz sine wave current injections were simultaneously delivered both to the soma and apical dendrites (dendritic current was 180 degrees out-of-phase with soma). ...

متن کامل

Pii: S0149-7634(97)00014-6

LEUNG, L. S. Generation of theta and gamma rhythms in the hippocampus. NEUROSCI BIOBEHAV REV 22(2), 275–290, 1998.—In the behaving rat, theta rhythm was dominant during walking and rapid-eye-movement sleep, while irregular slow activity predominated during immobility and slow-wave sleep. Oscillatory evoked potentials of 20–50 Hz and spontaneous fast (gamma) waves were more prominent during thet...

متن کامل

GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing networ...

متن کامل

Modeling inheritance of phase precession in the hippocampal formation.

Spatial information about the environment is encoded by the activity of place and grid cells in the hippocampal formation. As an animal traverses a cell's firing field, action potentials progressively shift to earlier phases of the theta oscillation (6-10 Hz). This "phase precession" is observed also in the prefrontal cortex and the ventral striatum, but mechanisms for its generation are unknow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hippocampus

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 1998